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Model equations which describe the evolution of long-wave initial data in water of 
uniform depth are tested to determine explicit criteria for their applicability. We 
consider linear and nonlinear, dispersive and non-dispersive equations. Separate 
criteria emerge for the leading wave and trailing oscillations of the evolving wave 
train. The evolution of the leading wave depends on two parameters: the volume 
(non-dimensional) of the initial data and an Ursell number based on the amplitude 
and length of the initial data. The magnitudes of these two parameters determine the 
appropriate model equation and its time of validity. For the trailing oscillatory waves, 
a local Ursell number based on the amplitude of the initial data and the local wave- 
length determines the appropriate model equation. Finally, these modelling criteria 
a.re applied to the problem of tsunami propagation. ksymptotic (t + 00) linear dispersive 
theory does not appear to be applicable for describing the leading wave of tsunamis. 
If t,he length of the initial wave is approximately 100 miles, the leading wave is 
described by a linear non-dispersive model from the source region until shoaling 
occurs near the coastline. For smaller lengths ( - 40 miles) a linear dispersive (but not 
asymptotic) model is applicable. The longer-period oscillatory waves following the 
leading wave, which can induce harbour resonance, apparently require a nonlinear 
dispersive model. 

1. Introduction 
Despite the long history of water-wave investigations there is still little agreement 

regarding the appropriate model equations for describing the motion of long two- 
dimensional water waves of fairly small amplitude propagating in shallow water. 
Such problems often arise in the study of ocean waves such as tsunamis or storm 
surges and in the scaled models of these phenomena in the laboratory. Typically, the 
ratio ~ , , / h  of the maximum wave ampIitude to the depth is small, as is the reciprocal 
(Z/h)-lof the dimensionless wavelength. Under these conditions, the initial propagation 
of two-dimensional surface waves is modelled by the linear wave equations 

Tt+hu, = 0, ut+gq, = 0, (1) 
t Present address : Aeronautical Research Associates of Princeton, Inc., Princeton, New 

Jersey. 
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where ~ ( x ,  t )  is the wave height above the still water level and u(x,  t )  is the horizontal 
fluid velocity. Equations ( 1 )  split an initial disturbance into left-running and right- 
running waves. Each of these two waves then develops independently (to leading 
order), even if the wave propagates beyond the time interval in which ( 1 )  is valid. 
The disagreement occurs in describing the evolution of these waves after this time. 

The Korteweg-de Vries (1895) equation 

(gh)-+Tt + qz + $hh-'yqz + ih2yzrz = 0 (2) 

describes the evolution of right-running waves in a fluid of uniform depth. The 
problem with this model, of course, is its complexity. Simpler models are often 
obtained : 

(i) by dropping the nonlinear term in (2)' to yield a linear dispersive equation 

(gh)-trlt + T z  + dsh"r,zz = 0; 

(gh)-%t + T z  4- Qh-lyy, = 0, 

(gh)-+ T t  + T z  = 0, 

(3) 

(ii) by dropping the dispersive term in (2) to yield a nonlinear non-dispersive 
equation 

(4) 

(iii) by dropping both terms, to yield a linear non-dispersive equation 

( 5 )  

which is equivalent to using (1) .  Models equivalent to these have been used by Carrier 
(1971) for (3), Airy (1845) for (4) and Hwang & Divoky (1970) for (5). Ursell (1953) 
showed that the parameter 

which we shall call the Ursell number, determines which of these models is appropriate; 
one must use (2)' (3) or (4) depending on whether the Ursell number is of order unity, 
small or large, respectively. Ursell also suggested that a time-dependent Ursell 
number (based on the local characteristics near the front of the evolving wave train) 
will tend towards an order-one limit, so that all waves in this category eventually 
propagate according to (2).  (Ursell actually used slightly different models which are 
asymptotically equivalent to those used herein.) 

There seems to be no disagreement with Ursell's results; however, there is disagree- 
ment about how to measure the length which appears in (6), how to interpret 'order 
unity' and how definitive Ursell's results actually are. The purpose of this paper is 
to extend Ursell's argument to obtain definitive criteria which determine how to model 
a given problem. As a specific application of these criteria, the problem of tsunami 
propagation will be examined. 

In  order to obtain definite results the following point of view is adopted. If the 
initial disturbance is sufficiently smooth and localized, and if To/h and hll, based on 
the initial data, are both small, then (2) will be the appropriate model eventually. 
Equations (3), (4) and (5) can be considered as approximate models, whose solutions 
approximate the solution of the KdV equation (2) for a limited time. By comparing 
these times with the duration of the problem in question (e.g. the time of propagation 
of a tsunami between a source and target region, or of a wave down the length of a 
laboratory tank) one can determine whether the given model is adequate for the 
problem in question. 

u = ~ o ~ = p 3 ,  (6) 
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As shown below, this analysis provides the criteria, based on the overall dimensions 
of the initial disturbance, necessary to determine which theory models the leading 
wave that evolves from the initial data. For engineering applications, this wave is 
often the one of interest. However, the initial disturbance can also generate a train of 
dispersive oscillatory waves which follow this leading wave. In  this region only ( 2 )  
and (3), which are dispersive, can provide any information regarding wave evolution. 
By comparing the asymptotic ( t  -+ 00) solutions of these equations, a different criterion, 
based on a local Ursell number, is found to determine whether the solution of (3) is 
an adequate approximation of the solution of the KdV equation. 

Two points are worth noting. First, the criteria obtained here are based on a 
comparison of the solutions of ( 2 ) ,  (3), (4) and (5), which makes these results somewhat 
more definitive than those of Ursell, who simply compared the equations. Second, 
much of the analysis reported herein has been performed elsewhere. The contribution 
of this paper is to fit these pieces together, in order to obtain explicit results. 

2. Analysis of leading wave 
2.1.  Linear dispersive theory 

In  order to compare ( 2 )  and (3), it  is convenient to rewrite them by defining new 
variables 

Using these variables, the KdV equation becomes 

(7) x = h-'[X- (gh)*t], 7 = $(g/h)tt,  f ( ~ , 7 )  = @-'q(z;t). 

In  either case, t.he initial data are given by 

f (x, 0) = &Y) = $h-lq(z, 01% (10) 

where $(x) is a smooth function that vanishes rapidly as 1x1 +a. 
In  terms of these variables, the linear dispersive theory is valid as long as the 

solution of (9) approximates tha t  of (8). In  practical terms, however, the major 
advantage of the linear dispersive theory is that its solution achieves a simple asymp- 
totic form as ~ + a .  For short times, (9) offers no particular advantage over (8); hence 
the primary question for linear dispersive theory is: during what time interval does 
the asymptotic (7 + 00) solution of (9) approximate the solution of (8) ? The answer 
to this question is given by inequality (28) below, which is the consequence of the 
analysis up to that point. 

To determine this time interval, parameters which characterize the initial data will 
be required. Let 

- w  

be the dimensionless volume of the disturbance. If L denotes the characteristic length 

uo = W / W I  of the initial data, then 

is an Ursell number based on the overall dimensions of the initial data. (It is assumed 
that v + 0; the results of the analysis change significantly when v = 0.) The maximum 
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initial wave amplitude is yo. Since none of the model equations used herein are valid 
for breaking waves, we require 

Another characteristic wave amplitude a can be defined by 

rolh < 1. (13) 

Necessarily, 

but if the longest waves comprise most of the initial data, as in the case considered 
herein, these two amplitudes are approximately equal. 

Assume that there is a small parameter e associated with the amplitude of the initial 
data. (The required definition of e will come out of the analysis.) Consequently, a 
formal series solution of (8) is sought in the form 

f = efl + q2 + o(E3) .  

Substituting (15) into (8) yields a hierarchy of problems: 

(fl), + (fd,,, = 0 7  &(x, 0) = 9(x); 
CfA, + (f,),,, = --6fdfl)*, f 2 h  0) = 0; 

etc. 
The solution of (16) which is equivalent to (9) is well known: 

where 

$(k) = 1" 9(X)exP(-ikX)dX 
- w  

is the FouIier transform of the initial data. As 7+00, Ixl/.r+=O, the asymptotic form 
of this solution is 

€fl(x, 7) = $ ( O )  ( 3 7 ) t A i  (c)  - $ ( O )  (37)-)Ai' (y) - $ $ ( O )  (37)-'&'' (g) + o[( 3+], (19) 

where 
c = X/(37)f 

and Ai (g) is the Airy function defined by 

(The region defined by - 
The coefficients in (1 9) have simple interpretations: 

= O( 1 )  is a150 of interest and will be treated separately.) 
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where C, and C, are constants that depend on details of the initial data. Thus (19) 
becomes (as 7 --f 00) 

ef i (x ,  7 )  = ~ ( 3 7 1 4  (Ai + C, (9) ( 3 7 ) 3 ~ i ' ( ~ )  

From (21) it  follows that the time required for this representation to  become asymp- 
totic is at least 

(37)* 9 UO/l 71. 
A particular solution of (17) is 

- w  

Defining 

@(x) = = 

the homogeneous solution of (1 7) is 

Thus as 7+00, I x [ / T - + O  

e2fi(x,7) = rz{ - [s' Ai (~ )dz ]~+S(  - w  Ai(z)dz+O[(37)-)] I , 
---OD 

The appropriate definition of E is found from (21) and (25): 

E =  V E -  
2h2 

This result has two important consequences. First, linear dispersive theory (along with 
its large-time asymptotics) is ordinarily justified on the basis of small wave amplitudes. 
It is seen from (26) that the correct justification must be that the dimensionless 
volume is small, and arguments based on wave amplitude alone can be misleading. If 
the expansion is based on amplitude alone, the resulting solution does not satisfy the 
initial and boundary conditions of (17). Second, laboratory experiments on long waves 
of small amplitude should be scaled to preserve the dimensionless wave volume or 
these results may also be misleading. 

Note that the solution (25) remains O( 1 )  as 7 -+ 00, so that the series (15) cannot be 

(27 ) 
asymptotic after 

Thus, if an initial wave has a dimensionless volume 7 ( =k 0) and an Ursell number U, 
based on its overall dimensions, and if both of these parameters are small, then 
asymptotic linear dispersive theory is valid in an interval no larger than 

(344 = O(l T1-1). 

U,/l VI 4 (37)* g 111 71. (28) 

(It has been shown that the theory fails outside this interval; however, this does not 
necessarily mean tha t  the theory is valid within the entire interval.) If either U, 
or B is not small, then asymptotic (7+00) linear dispersive theory breaks down 
immediately. 
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2.2. Non-dispersive theories 
The KdV equation is usually derived as a model of long water waves by assuming 
that there exist two time scales (see, for example, Benney 1966; Korteweg & de Vries 
1895). Korteweg & de Vries essentially assumed 

u = O(1) ( 2 9 4  

and found (1) or (5) on the short time scale. Equation (2) or (8) occurs over a long time 
scale defined by T = ( ]ul /h)  t ,  where u/h is the dimensionless wave amplitude defined 
in (14). It follows that the maximum interval of validity of (1) or (5) is 

37 < h/laI = Uo/vj2. (29b) 

The same result applies if U, 
theory is relevant. The maximum interval of validity of (1) or ( 5 )  for this case is 

1.  If U, < 1, then I vl < 1 as well, and linear dispersive 

37 < (L/h)2 = (U0/V)j2. ( 2 9 4  

If U, 9 1, then (4) provides the first correction after (1) has lost its validity. It is 
well known from the theory of characteristics that solutions of (4) become discon- 
tinuous after a finite time. Certainly these solutions no longer approximate the 
solution of the KdV equation after discontinuities form. The time required for these 
discontinuities to occur depends on the detailed structure of the initial data. The 
longest time possible is 

(30) 

however the theory could become invalid well before this time. 
Between them, (28), (29b, c) and (30) define the maximum ranges of validity of 

(3)-(5) as an approximation of the KdV equation. Beyond those times one must use 
the KdV equation itself (or something equivalent). It remains to be determined when 
the solution of this equation achieves its asymptotic form. 

37 < ~ / l ~ l  = u:/l~l3, 

2.3. Asymptotic Kd V theory 
The ‘inverse scattering transform’ was discovered by Gardner et al. (1967, 1974) as 
a method for solving the KdV equation for initial data which are smooth and vanish 
rapidly as 1x1 +a. The method uses the initial data f(x, 0) for ( 8 )  as the potential 
in the linear eigenvalue problem 

d2@/dX2 + [A  +f(x, 011 @ = 0. (31) 

The spectrum of eigenvalues can contain both discrete ( A  < 0) and continuous ( A  > 0) 
sets and each part of the spectrum contributes to the asymptotic (7 + oc)) solution 
of ( 8 ) .  

If > 0, the number N of discrete eigenvalues is approximately given by 

N -  1 = quo). (32) 

A more precise statement is provided in Segur (1973). Each of these eigenvalues 
( A ,  = - K:)  contributes a soliton (a positive permanent wave) 

133) f,(x, 7) = 2 ~ :  sech2 K~ (x - 2% - 4 ~ :  7 )  
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to the asymptotic KdV solution. The largest of these solitons travels the fastest, and 
eventually appears at the front of the wave. The time required for this wave to emerge 
is approximately its ‘sorting time ’ 

(34) 
as demonstrated by Hammack & Segur (1974). This is probably the earliest time that 
the solution can be described as an ordered set of solitons followed by a train of dis- 
persive oscillatory waves. The amplitudes of these waves reach their h a 1  (constant) 
values at  a somewhat later time. 

The asymptotic contribution from the continuous spectrum ( A  = k2) is qualitatively 
similar to the solution of (9), as shown by Ablowitz & Segur (1976). (Their results 
apply only to cases in which there are no solitons. Because the asymptotic contributions 
from the discrete and continuous spectra dominate in different regions of space, it 
appears that their results could be applied to the general case with only minor modi- 
fication. However, in the analysis which follows, it will be assumed that no solitons 
evolve.) The boundary conditions for (31) are 

7, = o(L/?,,) = o ( u ~ P ) ,  

where r (k)  and l/a(k) are reflexion and transmission coefficients, respectively, for the 
potentialf(X, 0). The reflexion coefficient r ( k )  plays the role of the ‘nonlinear Fourier 
transform’, as shown in Ablowitz et al. (1974). 

For almost any initial data, 
r (0)  = - 1, (36) 

which implies that the asymptotic solution of the KdV equation has the following 
behaviour as 7+00 (see Ablowitz & Segur 1976). 

(i) x/7 = O(1). Here the solution is exponentially small. (If solitons were present, 
they would dominate in this region.) 

(ii) g = x/(37)+ = O(1). For 5 > 0, the solution matches the exponentially small 
solution ahead of it. For 5 < 0, it approaches the self-similar solution 

(37) Ax, 7) (37)-* {45- 4( - 2C)-i + 0“ - Y)-21). 
For {-+ - 00, the representation (37) breaks down, as smaller terms in the expansion 
grow exponentially. The solution here is 

exp [8( - 25Pl + . . . , 
(38) 

where M = Q(r”(0) - [r’(0)12), (39a) 

K = 0.8. (396) 

1 K M  f(x, 7 )  N (37)-f ( - 25) ( - 2 - $( - 25)-# + .. . + (37)-f  - 
( - 251% 

and K is a universal constant; approximately, 

(iii) The representation (38) matches with a ‘dissipationless shock layer’, which 
then matches with a region of slowly varying oscillations, which are discussed below. 

The maximum amplitude of the leading wave is found from (38) : 

fm,, (37)-f (im, (40) 
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structure of initial waves from which no solitons evolve. 

where 5, the location of the extremum, is given by 

( -25 ) )  = 2 ln37-~ ln ( -2~) -3 ln (2KM).  (41)  

Figure 1 (b) shows the qualitative behaviour of a wave that has evolved from negative 
initial data (as in figure l a )  according to the KdV equation (8). Linear dispersive 
theory, (9), yields similar qualitative behaviour. (For a comparison of both of these 
theories with experimental data, see the companion paper Hammack 8z Segur 1978.) 

The time required for this leading wave region to achieve its asymptotic state is, 
from (41 )  (by assuming - ( large), 

(37)2 @ (2KM)S ,  (42) 

where M depends on the initial data. In  order to relate (42) to U, and 7, attention is 
restricted to the particular class of initial data shown in figure 1( a) : rectangular waves. 
If the amplitude of the rectangular wave is positive, most of the wave energy goes 
into solitons, and (34 )  is relevant. If the amplitude is negative, no solitons exist and 
(42) applies. For this case the reflexion coefficient is (see Schiff 1968, p. 103) 

a sin { ( ka + a)+ A} 
(2kB+01)s in { (k2+a)~A}+2 ik (k2+~)~cos { (k2+a)4A} '  r (k)  = (43) 
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where a = a/h, and A = L/h. For a < 0, it follows from (39) that 

Note that 
M = [ 2 ) 4  sinh2(lal*A)]-l. 

( l ~ t ] * A ) ~  = L2/h3 = U,. 

(44) 

(45) 

Combining (42), (44) and (45) gives the time required for the leading (negative) wave 
in the KdV solution to  obtain its asymptotic form. This time 37 is as follows for various 
cases : 

(i) 37 < ~ ( i )  for U, 9 1, ~d > In / ~ d / V l ;  ( 4 6 4  

(ii) 37 = O [ ( U ; / V ~ ) ~ X ~ ( - ~ U ~ ) I  for U, > 1, ~t < lnI@/V\; (46b) 

(iii) 37 = O(li7I-3) for U, = O(1); (46c) 

(iv) 37 = o(lV1-3) for Uo< 1. ( 4 6 4  

Notice that a consequence of (46a, b) is that, for this class of initial data, the nonlinear 
non-dispersive theory (4) is never required. 

2.4. Summary of results for the leading w a v e  
Since several theories for the leading wave region have been considered, a summary 
of results for this region is appropriate. To obtain definite statements regarding the 
asymptotic KdV theory, attention has been restricted to rectangular initial data. 
Under this restriction, negative waves produce no solitons, while positive waves 
produce mostly solitons. 

For negative waves (a < 0) of small amplitude which are also long, five possible 
cases exist. Representative cases are shown in figure 2, where the asymptotic solution 
for the maximum amplitude f,,, of the leading wave is shown as a function of 37. 

(i) U, > 1, Ub > In I U&VI. The KdV solution becomes asymptotic almost im- 
mediately and there is no reason to adopt any other theory (see figure 2). 

(ii) U, $ 1, 1 VI 4 1, U i  < In 1 U$/Vl .  The maximum interval of validity for the 
linear non-dispersive theory ( 5 )  is given by (29b), while the asymptotic KdV theory 
takes over according to (46b). If information is needed at intermediate times, the 
safest procedure is to compute the solution of the KdV equation numerically. An 
alternative procedure is to compute using nonlinear non-dispersive theory (4) until it 
breaks down, and then use the KdV eguation. 

(iii) U, = O( l),  = O( 1). The KdV solution becomes asymptotic almost immediately 
(see figure 2). 

(iv) U, = O(l ) ,  171 4 1. Linear non-dispersive theory ( 5 )  breaks down according to 
(29b), while the asymptotic KdV theory takes over according to (46c). For information 
at intermediate times, a numerical solution of the KdV equation is required. 

(v) U, < 1, 171 4 1. This is the only case for which linear dispersive theory (3) 
applies. Initially, propagation is modelled by linear non-dispersive theory, which 
breaks down according to (29c). Linear dispersive theory follows, its asymptotics 
becoming applicable according to (28). Asymptotic KdV theory takes over according 
to (46d) .  Note that the asymptotic KdV and linear dispersive theories can be patched 
together at 37 = O( I V1-3) as shown in figure 2. 

For positive waves (a > 0), the results are slightly simpler. 
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FIGURE 2. Asymptotic (7 + co) decay of leading wave for rectangular and negative initial data. 
- , KdV asymptotics; ---, linear dispersive asymptotics. Shaded area represents region 
where 37 = O( and asymptotic sclutions may be patched. 

(i) U, 9 1. There are many solitons, for which the sorting time is given by (34). 
For shorter times, the KdV equation must be integrated numerically. For these 
rectangular waves nonlinear non-dispersive theory breaks down immediately. 

(ii) U, = O(1). Linear non-dispersive theory (5) breaks down according to (29b) ,  
after which time only the KdV equation applies. The soliton description applies after 
the sorting time given by (34). 

(iii) U, < 1.  There is one soliton, followed by oscillatory waves. As in (v) above, 
asymptotic linear dispersive theory applies in an interval no larger than that given 
by (28)) while the soliton can be identified after its sorting time, given by (34). Note 
that these two intervals overlap; hence the two theories may actually be matched 
for this case. 

3. Analysis of trailing wave oscillations 
Whereas most of the destructive energy of an evolving wave train may reside in its 

leading wave, the oscillatory waves which follow can also create severe problems if 
these waves happen to have frequencies equivalent to the natural frequency of a 
harbour ('harbour resonance') or other coastal configurations. Consequently, it  is also 
of interest to examine the trailing oscillatory waves. Regardless of U,, the Ursell 
number based on the overall dimensions of the initial data, these trailing waves are 
ips0 facto dispersive. Hence the only relevant question for these waves is whether 
linear dispersive theory (3) can be used to approximate the KdV equation. 

The solution of (9), linear dispersive theory, is still given by (18)) which can be 
evaluated as r + 00 with - x/r = O( 1)  by the method of stationary phase: 

f ( x ,  r )  - (371-4 ( 4 4  kll-4 (&k) exp [i(3k3(37) + tn)] + $( - k) exp [ - i(+k3(37) + &7r)]), 
(474 

where ka = -2137 = O(1). (47b) 
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In  the same region, the asymptotic solution of the KdV equation is (Ablowitz & 
Segur 1976) 

where 
f ( 2 , ~ )  N (37)-4lkJ* 2d cos 0, (48a) 

@ = $k3(37)-2d21n37+0(1), (48b) 

d2 = - (4n)-'ln(l - lr(@)12) (48c) 

and (47b) has been used. For Ir(Sk)l < 1, (48c) is approximated by 

dZ N (4n)-l lr(Sk)l2, 
so that (48 a )  becomes 

(49) 

f ( X , T )  - (37)-4(4n1kl-4(2lklr(gk)COS0}. (50)  

Now the question becomes: under what circumstances will (47 a )  and (50) yield approxi- 
mately the same results? 

To obtain definite results, a negative rectangular wave as shown in figure 1 (a)  is 
again considered. Hence with a < 0, 

a exp ( - &ikA) sin (@A) 
4k = 

while 
ak sin [ ( $k2 + a)* A] 

kr(3k) = ( ~ k 2 + a ) s i n [ ( ~ k 2 + a ) 4 A ] + i k ( ~ k 2 + a ) ~ c o s [ ( ; ) k 2 + a ) * A ] '  (52) 

It can be verified that if 
;)k2 >> 1.1 = l a p  (53) 

then W g k )  i&), (54) 

u< $, (55a) 

where . U = Jal/k2 cc laj22/h3 (55 b) 

and the two results coincide to leading order. However, (53) can be written as 

is a local Ursell number based on the original wave amplitude and the local wave- 
number. Thus, for the trailing wave oscillations, the linear theory approximates the 
nonlinear theory whenever the local Ursell number is small. In  regions where (53) fails, 
the results of the two theories differ considerably. For the case of rectangular initial 
data, the dominant wavenumbers in the trailing wave groups are 

k,(linear) = (2m- l)nh/L, m = 2,3, ..., ( 5 6 4  

k,(KdV) = (41al/h+[(2m- l)nh/LI2}4, rn = 1,2, ... . (56b) 

These dominant wavenumbers are represented by local extrema in the amplitude 
spectra given by (51) and (52); hence the energy content of the oscillatory waves is 
concentrated in the vicinity of these k. A separate (node-to-node) wave group exists 
for each k,, with m = 1 corresponding to the first group behind the leading wave for 
the nonlinear solution and m = 2 representing the first group in the linear solution. 
(The discrepancy in the numbering of wave groups for small m occurs because the 
linear and nonlinear solutions are required to yield the same results as k-tw or 
m-tm.) A new feature indicated by (56a, b) is that the linear solution fails to predict 
the existence of an energy peak (or wave group) corresponding tom = 1 in the nonlinear 
solution. (See the companion paper Hammack & Segur 1978.) 

I3 F 1 . M  84 



370 J .  L. Hammack and H .  Segur 

4. Two-dimensional tsunamis: an example 
As a specific application of these results, the problem of a two-dimensional tsunami 

propagating in an ocean of uniform depth is considered. A simplified model is used in 
order to select a basic theory, which can then be modified to include other effects such 
as variations in ocean depth and three-dimensional spreading of wave energy. 

Using information from the Alaskan earthquake of 1964 as a guide (cf. Plafker 
1969; Van Dorn 1964), typical initial dimensions for a destructive tsunami appear 
to  be 

a = l f t ,  h = lO4ft, L = 106ft. (57a) 

u, = 1, 7 = 10-2. (57 b)  

On the basis of these values, the controlling parameters for the leading wave are 

Thus propagation of the leading wave in the open ocean is modelled by the linear wave 
equation (1) or (5) followed by the KdV equation (2). Equations (3) and (4) are 
inapplicable for the leading wave region. The breakdown of (l), as determined from 
(29 b), occurs when 

37 N 104. 

From (7), the distance X the leading wave has propagated during this time is given by 

+ X / h  = 37 -N lo4, 

or X 40000 miles. (58) 

Consequently, neither nonlinearity nor frequency dispersion has any effect on the 
leading wave as it propagates across any ocean. 

Alternatively, Carrier (1971) has used 

a = loft, h = 1.5 x lO4ft, L = 2 x 106ft, (59 a) 

which models a shorter tsunami of larger amplitude in deeper water compared with 
that of (57a).  Using these values, one obtains 

u, N 10-1, P N 10-2 (59b) 

X < 600miles. (60) 

and the breakdown of (1) occurs, according to (29c), for 

Hence linear frequency dispersion may affect this wave over much of typical ocean 
trajectories as evidenced by Carrier’s (1971) computations. Even so, on the basis of 
(28), linear asymptotics apply only for 

X & 6OOOmiles, (61) 

which exceeds the length of relevant trajectories. Assuming the tsunami characteristics 
of (57a)  and (59a) to span the range of realistic values, linear asymptotics are not 
applicable to describing the propagation of the leading wave (k = 0). Whether any- 
thing more complicated than (1) is required depends primarily on the length of the 
initial disturbance. 
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When the leading wave reaches a continental shelf, the depth is reduced significantly. 
In  this region, if the tsunami characteristics based on (57a) are assumed with the 
depth reduced to h = 500ft, then 

u, 21 104, V N 4. (62) 

From (29b) it  is seen that linear non-dispersive theory can be used until 

37 2 103, 

and the distance across the continental shelf (of uniform depth) that the leading 
wave propagates during this time is given by 

or 
+X/h  2i lo3, 

X = 200miles. 

But most continental shelves are less than two hundred miles wide; hence for long 
(L N 100 miles) tsunamis linear non-dispersive theory is the relevant model for the 
leading wave from the source region to where the wave begins shoaling near a beach. 
For shorter tsunamis (L N 40 miles), the leading wave may be dispersive before striking 
the continental shelf. In  either case, the appropriate theory over the shelf for specific 
cases can be found by the procedures outlined above. 

In  order to examine the trailing oscillatory waves of a tsunami, the wave char- 
acteristics of (57a) are assumed to represent a negative rectangular wave. Then, 
according to KdV asymptotics (56b), the first wave group (m = 1) trailing behind 
the leading negative wave has the dominant wavenumber k, = 0.037. For subsequent 
wave groups the wavenumbers are found from (56a, b) to be 

1 k,(linear) = 0-094, 
k3(linear) = 0.157, 
k4(linear) = 0.220, 

k,(KdV) = 0.096, 
k3(KdV) = 0.158, 
k3(KdV) = 0.221. 

Thus the critical wavenumber kc which represents the lower limit of applicability of 
linear analysis to a tsunami lies in the range 0.04 < kc < 0.10. This range of wave- 
numbers corresponds to ocean wave periods of 18-50 min. A similar analysis for the 
initial characteristics given by (59a) yields a range of 13-24 min. It appears that many 
harbours have natural periods of oscillation which lie in or exceed this range (see, for 
example, Raichlen 1970). Hence linear analysis of a tsunami may be misleading in 
determining the potential excitation of resonance for these harbours. 

5. Conclusions 
The applicability of the following model equations for describing the evolution of 

long-wave initial data has been investigated: a linear non-dispersive model, a non- 
linear non-dispersive model, a linear dispersive model and a nonlinear dispersive 
model. From this analysis the following conclusions can be stated. 

(i) For the leading wave evolving from the initial data, the time of applicability 
for each model equation is governed by the magnitude of two non-dimensional 
parameters: (a) an Ursell number based on the amplitude and length of the initial 
data and (b) the volume of the initial data. The details are summarized in 3 2.4. 

I 3-2 
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(ii) For describing the trailing wave oscillations, which are inherently dispersive, a 
linear dispersive theory is applicable whenever a local Ursell number, based on the 
amplitude of the initial data and the local wavenumber, is small. When this parameter 
is O( 1) or larger, a nonlinear dispersive theory (e.g. the KdV equation) is required. 

As a specific application of these modelling criteria the problem of tsunami pro- 
pagation was examined. On the basis of assumed characteristics for a tsunami near 
its source region, the following conclusions appear to be applicable. 

(iii) Asymptotic linear dispersive theory never applies to the propagation of tsunamis. 
If the length of the initial disturbance is approximately 100 miles, the leading wave 
(k = 0) is modelled by linear non-dispersive theory untiI the wave begins to shoal. For 
shorter lengths ( N 40 miles) linear dispersive theory is applicable. 

(iv) The critical wavenumber kc representing the lower limit of applicability of 
linear analysis to the oscillatory trailing waves lies in the range of 0.4 < kc < 0.10, 
which corresponds to ocean wave periods of 18-50min for initial tsunamis char- 
acterized by (57a) .  A similar analysis using the characteristics (59a) yields a cut-off 
wave period in the range 13-34min. For harbours whose fundamental period exceeds 
these ranges, the problem of harbour resonance requires a nonlinear dispersive model 
for the impinging tsunamis. 

One author (JH) is indebted to the Mathematics Department, Clarkson College, for 
providing summer support which made this paper possible. He would also like to 
acknowledge his colleague (HS), who provided the major inspiration for the work 
presented herein. This work was supported by NSF Grants DES 75-06537 and MCS 
75-07568AO2 at the Department of Mathematics, Clarkson College and the Engineering 
Industrial Experiment Station at the University of Florida. 

R E F E R E N C E S  

ABLOWITZ, M. J., KAUP, D. J., NEWELL, A. C. t SECUR, H. 1974 The inverse scattering 

ABLOWITZ, M. J. & SEGUR, H. 1976 Asymptotic solutions of the Korteweg-de Vries equation. 

AIRY, G. B. 1845 Tidal waves. Encyclopedia Metropolitma. London. 
BENNEY, D. J. 1966 Long non-linear waves in fluid flows. J. Math. & Phys. 45,52-63. 
CARRIER, G. F. 1971 The dynamics of tsunamis. Lectures in Appl. Math., Am.  Math. SOC. 13, 

GARDNER, C .  S., GREENE, J. M., KRUSKAL, M. D. t MIURA, R. M. 1967 Method for solving the 

GARDNER, C. S., GREENE, J. M., KRUSKAL, M. D. t MIURA, R. M. 1974 Korteweg-de Vries 
equation and generalizations. VI. Methods for exact solutions. Comrn. Pure Appl. Math. 

HAMMACK, J. L. BE SEGUR, H. 1974 The Korteweg-de Vries equation and water waves. Part 2. 

HAMMACP, J. L.  & SEGUR, H. 1978 The Korteweg-de Vries equation and water waves. Part 3. 

HWANG, L. S. t DIVOKY, D. 1970 Tsunami generation. J. Geophys. Rea. 75 ,  6802-6817. 
KORTEWEG, D. J. t DE VRIES, G. 1895 On the change of form of long waves advancing in a 

rectangular canal, and on a new type of long stationary wave. Phil. Mag. Ser. 5,39,422-443. 
PLAFKER, G. 1969 Tectonics of the March 27, 1964 Alaska earthquake. Geol. Survey Prof. 

Paper, no. 543-1. 

transform - Fourier analysis for nonlinear problems. Stud. Appl. Math. 53, 249-315. 

Stud. Appl .  Math. (to appear). 

157-189. 

Korteweg-de Vries equation. Phys. Rev. Lett. 19, 1095-1097. 

27, 97-133. 

Comparison with experiments. J. Fluid Mech. 65, 289-314. 

Oscillatory waves. J. Fluid Mech. 84, 337-358. 



Modelling criteria for long water waves 373 

RAICHLEN, F. 1970 Tsunamis: some laboratory and field observations. Proc. 12th Conf. Coastal 

SCHIFF, L. I. 1968 Quantum Mechunk, 3rd edn. McGraw-Hill. 
SEGIJR, H. 1973 The Korteweg-de Vries equation and water waves. Part I .  Solution of the 

URSELL, F. 1953 The long-wave paradox in the theory of gravity waves. Proc. Camb. Phil. 

VAN DORN, W. G. 1964 Source mechanism of the tsunami of March 28, 1964 in Alaska. Proc. 

Engng, Washington, D.C. pp. 2103-2122. 

equation. J .  Fluid Mech. 59, 721-736. 

SOC. 49, 685-694. 

9th Conf. Coastal Engng, Lbbon, pp. 166-190. 




